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Žitec–Hluboš Fm.
grayish to green, and red polymictic
conglomerate.

Sádek Fm.
red, green, gray, and black of
fine-grained graywacke and subarkose.

Holšiny–Hořice Fm. 
light gray to red quartz conglomerate, 
sandstone, brackish shale, siltstone, tuff. 

Klou –ček Čenkov Fm.
red, gray, green quartz conglomerate, 
sandstone, tuff.

Chumava–Baština Fm.
conglomerate, graywacke, arkose

Jince Fm.
siltstone, shale

Ohrazenice Fm.
conglomerate, sandstone
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Introduction
A transition from active to passive margin during the late Ediacaran to early Cambrian occurred along 
the Avalonian–Cadomian orogenic belt. This transformation was characterized by a continuous 
transition from subduction to extension and rifting (e.g., Nance et al., 2002; 2008). The extension was 
recorded by vigorous magmatic activity and by the development of sedimentary basins (e.g., Chlupáč 
et al., 1998; Dörr et al., 2002; Žák et al., 2013). The Cadomian subduction stopped at ca. 540 Ma in 
the Armorican Massif and Saxothuringia but continued in the Ossa Morena Zone (Iberian Massif) and 
Teplá–Barrandian unit (Bohemian Massif) until at least the early to middle Cambrian. The most 
preserved and less affected by younger deformation example of Cambrian sedimentary basin is the 
Příbram–Jince basin in the Teplá–Barrandian unit (e.g., Kukal, 1971), which recorded the initial rifting 
of ribbon continent with associated volcanic and plutonic complexes, and briefly interrupted by marine 
transgression (Dörr et al., 2002; Kukal, 1971; Zulauf et al., 1999). We combine the sedimentary record 
observation from mesoscale with paleocurrent analysis from the anisotropy of magnetic susceptibility 
as a testpiece scenario to unravel the timing and evolution of the basin.
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Results
The paleocurrent directions inferred from the magnetic lineations in most cases show a good match with 
those obtained from mesoscopic cross-stratification. Different direction in the paleocurrent could be as 
the result of (1) the statistical distribution of individual specimens and may easily flip by ~180°, and (2) 
fine-grained magnetic particles that may align systematically either parallel or perpendicular to flow lines 
during deposition, depending on the velocity gradient and depositional mechanism (e.g., Rees, 1965, 
1975; Taira and Scholle, 1979; Stachowska et al., 2020 and references therein).
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Conclusion
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Inferred paleocurrent from mesoscale measured from the down-dip planar and through cross-
stratifications obtained from 15 outcrops (out of 74 stations documented in total). Anisotropy of magnetic 
susceptibility (AMS) was used here to analyze quantitatively the symmetry, intensity, and orientation of 
‛invisible' magnetic fabrics in sandstones to obtain independent quantitative information on paleocurrent 
directions (e.g., Felletti et al., 2016; Hrouda et al., 2009). To remove the effect of post-depositional 
tectonic deformation (bedding tilt), the paleocurrent vectors have been rotated to horizontal about a 
rotation axis represented by strike of the bedding by an angle equal to bedding dip.

It is apparent that the deposition in the Příbram–Jince basin was syn-tectonic. We suggest that the 
previous described provenance changes indicate a change in tectonic regime during deposition, also 
controlling the basin fill thickness and volcanic activity. We interpret that the basin evolved kinematically 
in two main phases. The first phase involved gravel accumulation in the SE with the basin fill younging 
toward the NNW. Then, a short period of tectonic quiescence may be assumed on the basis of an abrupt 
change from gravel to fine-grained basin fill as represented by the areally extensive Sádek Formation (at 
512 ± 5 Ma). Later, faulting became active again and created a northwesterly facing half-graben system. 
This first phase of the basin evolution was controlled by pure shear (orthogonal) NW–SE extension. The 
second phase involved the sediment transport from basin-axis-oblique (from the SE) to basin-axis-
parallel (from SW or W) marks a major switch in the tectonic regime that control the evolution.

?

600 m

0 m NW

SE

A
B

Paseky shale

Transgressive
surface

Regressive
surface Key:

Zones and sutures of the 
Variscan orogenic belt 
(dashed where concealed): 
Rhenohercynian (RH), 
Saxothuringian (ST), 
Moldanubian (MO), West 
Asturian–Leonese (AL), 
Cantabrian (CA) 

Teplá–Barrandian unit (TB; largely 
underlain by the Blovice accretionary  
complex), Saxothuringian unit (SX), 
North Armorican Massif (AM), 
Ossa–Morena (OM)

▲Figure 1. (a) Distribution of Cadomian terrane with sedimentary Cambrian basins along the Variscan orogenic belt in Europe. The most preserved and 
undeformed Cambrian basin by younger deformation is the -Jince basin in the Teplá–Barrandian unit within the center of the Bohemian Massif. Příbram
(b) Geological map of the -Jince basin (Kukal, 1971; Czech Geological Survey). The rock formation is downdip and getting younger to the NW.Příbram
(c) Stratigraphy of the -Jince basin related to its thickness, percentage of unstable material, and volcanic activity. Compiled from Fatka and Příbram
Szabad (2014), Hajná et al. (2018), and Kukal (1971). 
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The Teplá–Barrandian unit recorded Cadomian subduction until ca. 527–524 Ma (Hájna et al., 2018). 
The Příbram–Jince basin was initiated at ca. 515 Ma and filled with alluvial and fluvial deposits.The 
inferred fault geometry and kinematics and geometry of basin fill suggest that the Příbram–Jince basin 
developed as a dextral transtensional pull-apart basin with multiple depocenters during the initial 
rifting of ribbon terranes. The volcanic activity (usually bimodal) was delayed and short-lived, lasting 
only from ca. 500 Ma to 485 Ma.
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▲Figure 2. Cross-section of Příbram–Jince basin along the Litavka River. 
The strata shows younger rock formation to the NW. The photographs 
represent the most important features within the basin related to 
sedimentation, volcanic activity, and tectonic deformation.

►Figure 3. (a) Inferred 
paleocurrent from cross-
stratification (grey arrows) and 
AMS measurements (color 
arrows). The paleocurrent suggests 
dynamic transformation flowed from the 
SE to NW, and from the SW or W to NE.
(b) Example of Type I fabric (depositional 
fabric). It is characterized by strongly clustered 
maximum (k1; red square) and minimum (k3; blue 
circle) principal susceptibilities, shape parameter 
scattered across both the oblate and prolate fields, 
and has a low degree of anisotropy.
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◄ Figure 4. The 
Příbram‒Jince basin 
evolution during the rifting of 
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continent in the Cambrian. 
(a) map view showing the 
basin evolution in two 
phase; (1) the pure shear 
(ca. 515‒512 Ma), and pull-
apart dextral transtension 
(511‒499 Ma). (b) Inferrred 
depositional setting in 
alluvial fan and fluvial 
distributary system. 
Depositional models were 
modified from Gawthorpe 
and Leeder (2000)
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Žitec–Hluboš Fm.: polymictic 
conglomerate, massive– 
thickly bedded, chaotic with 
cross-stratification. Clasts 
compose of quartz, chert, 
granite, rhyolite, plagio-
granite with size up to 20-30 
cm.

Sádek Fm.: sandstone, 
siltstone,shale; massive– 
thinly bedded. Has a mud 
strips with cross-
stratification. Dominated by 
fine-grained quartz sand 
(subarkose).

Chumava–Baština Fm.: 
monomictic conglomerate, 
massive–thickly bedded, 
poor–moderately sorted with 
quartz pebbles layer. Clasts 
compose of quartz and chert 
(sub/graywacke) with size 
up to 10–20 cm.

Holšiny–Hořice Fm.: quartz 
sandstone conglomerate, 
massive–thickly bedded, 
moderately sorted with 
cross-stratification. Clasts 
compose of quartz and chert 
(sub/graywacke) with size 
up to 1–10 cm.

Klouček–Čenkov  Fm.: quartz 
sandstone conglomerate, 
thin–thickly bedded, moderately 
sorted with quartz pebbles layer 
and cross-stratification. Clasts 
compose of quartz and chert 
(sub/graywacke) with size up to 
1–5 cm.

Ohrazenice Fm.: 
monomictic 
conglomerate, 
massive–thickly bedded, 
poorly sorted with quartz 
pebbles layer. Clasts 
compose of quartz and 
chert up to 5–20 cm.

Jince Fm.: siltstone and 
sand, massive bedded, 
fine-scale lamination with 
bedding-parallel cleavage. 
Clasts compose of silt and 
shale (sub/graywacke).
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